Lessons 030-032

Wednesday, November 22

The Z Test for Population Means

- Suppose we have a sample from a normal population, with known variance (σ) and unknown mean.
- We wish to test: $H_{0}: \mu=\mu_{0}$ versus the alternative, $H_{1}: \mu \neq \mu_{0}$.
- May also consider $H_{0}: \mu \leq \mu_{0}$ versus $H_{1}: \mu>\mu_{0}$ or $H_{0}: \mu \geq \mu_{0}$ versus $H_{1}: \mu<\mu_{0}$.
- We have see the sampling distribution for

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

- If μ_{0} is the correct mean, this will be $N(0,1)$.
- Note: we do not need a normal population for this.
- How do we find our p-value?

Calculating p-values

Calculating p-values

Calculating p-values

P-Value for (Two Sided) Tests

- If we observe z, we want to compute $P(|Z| \geq|z|)$.
- For symmetric distributions this is given by

$$
P(Z \geq|z|)+P(Z \leq-|z|)
$$

- Can use the tables, critical values, or statistical software we have seen before.
- If our null hypothesis is one-sided then one of the two tail regions does not provide evidence against H_{0}.
- If $H_{0}: \mu \geq \mu_{0}$, then only consider $P(Z \leq z)$.
- If $H_{0}: \mu \leq \mu_{0}$, then only consider $P(Z \geq z)$.
- Note here we do not take the absolute value.

Rejection Regions for Hypothesis Tests - Critical Values

Two Sided Hypothesis Test - Rejection Region

The One Sample t Test

- Suppose we have a sample from a normal population, with unknown variance and unknown mean.
- We wish to test: $H_{0}: \mu=\mu_{0}$ versus the alternative, $H_{1}: \mu \neq \mu_{0}$.
- May also consider $H_{0}: \mu \leq \mu_{0}$ versus $H_{1}: \mu>\mu_{0}$.
- May also consider $H_{0}: \mu \geq \mu_{0}$ versus $H_{1}: \mu<\mu_{0}$.
- We have see the sampling distribution for

$$
T=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}} .
$$

- If μ_{0} is the correct mean, this will be t_{n-1}.
- Finding the p -value is equivalent to the $N(0,1)$ case, substituting the normal distribution for a t distribution.

Calculating p-values

Calculating p-values

Calculating p-values

P-Value for (Two Sided) Tests

- If we observe t, we want to compute $P(|T| \geq|t|)$.
- For symmetric distributions this is given by $P(T \geq|t|)+P(T \leq-|t|)$.
- If our null hypothesis is one-sided then one of the two tail regions does not provide evidence against H_{0}.
- If $H_{0}: \mu \geq \mu_{0}$, then only consider $P(T \leq t)$.
- If $H_{0}: \mu \leq \mu_{0}$, then only consider $P(T \geq t)$.
- Note here we do not take the absolute value.

Rejection Regions for Hypothesis Tests - Critical Values

Two Sided Hypothesis Test - Rejection Region

The Z Test for Population Proportions

- Suppose we have a sample from a binomial distribution with n trials and unknown p.
- We wish to test: $H_{0}: p=p_{0}$ versus the alternative, $H_{1}: p \neq p_{0}$.
- May also consider $H_{0}: p \leq p_{0}$ versus $H_{1}: p>p_{0}$.
- May also consider $H_{0}: p \geq p_{0}$ versus $H_{1}: p<p_{0}$.
- When the normal approximation applies we have seen that

$$
Z=\frac{\hat{p}-p_{0}}{\sqrt{n p_{0}\left(1-p_{0}\right) / n}}
$$

- If p_{0} is the correct mean, this will be approximately $N(0,1)$.
- How do we find our p-value?

Calculating p-values

Calculating p-values

Calculating p-values

P-Value for (Two Sided) Tests

- If we observe z, we want to compute $P(|Z| \geq|z|)$.
- For symmetric distributions this is given by

$$
P(Z \geq|z|)+P(Z \leq-|z|)
$$

- Can use the tables, critical values, or statistical software we have seen before.
- If our null hypothesis is one-sided then one of the two tail regions does not provide evidence against H_{0}.
- If $H_{0}: p \geq p_{0}$, then only consider $P(Z \leq z)$.
- If $H_{0}: p \leq p_{0}$, then only consider $P(Z \geq z)$.
- Note here we do not take the absolute value.

Rejection Regions for Hypothesis Tests - Critical Values

Two Sided Hypothesis Test - Rejection Region

